
Netgator: Malware Detection Using Program
Interactive Challenges

Brian Schulte, Haris Andrianakis, Kun
Sun, and Angelos Stavrou

Intro

 Increase of stealthy malware in
enterprises
 Obfuscation, polymorphic techniques

 Often uses legitimate communication
channels
 HTTP

 Volume of traffic makes it difficult to process all
communications

 HTTPS
 Lack of inspection currently

 Disguised as legitimate applications

Intro

 Netgator
 Inspection of legitimate ports/protocols

 Port 80, HTTP/S

 Transparent proxy

 2 parts
 Passive

 Determine type of application
 Easily catch “dumb” malware

 Active
 Challenge based on expected functionality (PICs)

Intro

 Focus on HTTP/S, browsers

 Study of 1026 malware samples
 Out of samples where network activity was observed,

~80% utilized HTTP/S

 Very high percentage of HTTP/S malware try to
masquerade as browsers

 None passed our challenges

Intro

 PIC
 Challenge comprised of a request and expected response

pair
 Communication intercepted
 Response it sent back to exercise known functionality of

advertised program
 If expected answer is returned, communication is allowed

to pass through
 If not, drop connection

Intro

 2 pronged approach
 Passive to classify traffic
 Active to “challenge” application

 Prototype built using HTML, Javascript, and

Flash challenges

 Low overhead
 353 ms end-to-end latency

Design and Implementation

 2 major parts
 Passive
 Active

 Passive

 Establish type of application
 Browser, VOIP, OS updates, etc…

 Signatures are determined by unique HTTP header
orderings

Active Challenge Architecture

 Proxy & ICAP server duo
 Squid, HTTP/S transparent proxy
 Greasyspoon, Java based ICAP server

 What is ICAP?

 Internet Content Adaption Protocol
 Allows modification of all elements of HTTP

request/response
 Body, headers, URL, etc…

Active Challenge Architecture

Active Challenges

 For known applications, we challenge them
based on known functionality
 For browsers, HTML/Flash/Javascript

 Challenge code comprised of a redirect to the

originally requested file with a hash appended
as a parameter

 To cut down on overhead, text/html data is
challenged on the response

Active Challenges

 Two types
 Request
 Response

 Request challenging
 Stop the initial communication
 Send back challenge immediately
 Higher latency, good protection

 Response challenging
 Allow original response to come back
 Imbed challenge in original response
 Lower latency, possibly lower security

Active Challenges – Request Challenge

Active Challenges – Request challenging

 Hash is unique each time
 Based on time, requesting IP, requested URL, and secret key

 Headers replaced with HTTP response headers
 Forces the new response back to the client

 Challenge code example, Javascript:

Active Challenge – Response Challenge

 Challenging every request at the request would
cause a lot of overhead
 Challenge text/html data at the response

 Let the original request pass through

 Insert challenge inside the original response

 Client gets response and then challenge is

processed

Active Challenge – Response Challenge

Active Challenges

 The hash is what tells the proxy if the application
passed the challenge
 Attacker can just parse out hash

 Encrypt the hash with a Javascript
implementation of AES

 The challenge that is sent back now contains
the code (and key) to decrypt the hash
 Forces the attacker to have a full Javascript engine to

decrypt the hash

Active Challenges – Handling SSL

 Squid’s SSL-bump utilized

 Traffic encrypted with Netgator’s key
 Decrypted at proxy for processing
 Re-encrypted with external site’s key when leaving proxy

Active Challenges

 Further cutting down on overhead
 Automatically pass network requests if the client has

passed a challenge for that site’s domain

 Client has passed challenge for www.foo.com

 Request for www.foo.com/bar passes automatically

 Records are periodically cleaned

 Avoid malware “piggy-backing” off legitimate client’s who
passed challenges

Experimental Evaluation

 Used PlanetLab nodes for download tests

 Downloads of 3 different file sizes
 10KB, 100KB, 1MB

 3 challenges types

 HTML, Javascript, Flash

 Request and Response challenging

Experimental Evaluation

Experimental Evaluation

 HTML lowest overhead
 Javascript results

 Nice middle ground between difficulty to pass challenge
and measured overhead

 Flash results
 Highest overhead
 Toughest challenge, combines Javascript and Flash

 Response challenge results
 By far the lowest, lower security though since the original

response is let through

Discussion

 Attackers will attempt evasion
 Using a different user-agent/header signature

 If unknown, communications are blocked
 If known, challenge will still be sent

 Some legitimate applications might not be able

to have challenges crafted
 Whitelist can be created

Related Works

 Closest to our work is work by Gu et al.
 Active botnet probing to identify obscure command and

control channels

 Main differences

 We do not expect nor ever rely on a human to be behind
an application’s communications

 Our work focuses on legitimate applications rather than
malicious botnets

Related Works

 Our work similar to OS and application
fingerprinting
 Nmap

 CAPTCHA puzzles

 Instead of focusing on humans, focus on the application

 Traditional botnet detection

 BotSniffer, BotHunter, BotMiner

Conclusion

 Netgator
 Inline malware detection system
 2 parts

 Passive to classify traffic and thwart “dumb” malware
 Active to challenge applications identity

 Program Interactive Challenges

 Fully transparent to the user
 Average latency

 353ms for request challenges
 24ms for response challenges

	Netgator: Malware Detection Using Program Interactive Challenges	
	Intro
	Intro
	Intro
	Intro	
	Intro
	Design and Implementation
	Active Challenge Architecture
	Active Challenge Architecture
	Active Challenges
	Active Challenges
	Active Challenges – Request Challenge
	Active Challenges – Request challenging
	Active Challenge – Response Challenge
	Active Challenge – Response Challenge
	Active Challenges
	Active Challenges – Handling SSL
	Active Challenges
	Experimental Evaluation
	Experimental Evaluation
	Experimental Evaluation
	Discussion
	Related Works
	Related Works
	Conclusion

